On sampling graphical Markov models (1705.09717v2)
Abstract: We consider sampling and enumeration problems for Markov equivalence classes. We create and analyze a Markov chain for uniform random sampling on the DAGs inside a Markov equivalence class. Though the worst case is exponentially slow mixing, we find a condition on the Markov equivalence class for polynomial time mixing. We also investigate the ratio of Markov equivalence classes to DAGs and a Markov chain of He, Jia, and Yu for random sampling of sparse Markov equivalence classes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.