Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From homogeneous metric spaces to Lie groups (1705.09648v4)

Published 26 May 2017 in math.MG

Abstract: We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively. After a review of some classical results, we use the Gleason-Iwasawa-Montgomery-Yamabe-Zippin structure theory to show that for all positive $\epsilon$, each such space is $(1,\epsilon)$-quasi-isometric to a connected metric Lie group. Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly isometric to a simply connected solvable metric Lie group. Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of Gordon and Wilson and of Jablonski on these, showing, for instance, that connected, simply connected solvable Lie groups may be made isometric if and only if they have the same real-shadow. Finally, we extend a result of Kivioja and Le Donne to show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups with an automorphic dilation.

Summary

We haven't generated a summary for this paper yet.