Simply connected indefinite homogeneous spaces of finite volume
Abstract: Let $M$ be a simply connected pseudo-Riemannian homogeneous space of finite volume with isometry group $G$. We show that $M$ is compact and that the solvable radical of $G$ is abelian and the Levi factor is a compact semisimple Lie group acting transitively on $M$. For metric index less than three, we find that the isometry group of $M$ is compact itself. Examples demonstrate that $G$ is not necessarily compact for higher indices. To prepare these results, we study Lie algebras with abelian solvable radical and a nil-invariant symmetric bilinear form. For these, we derive an orthogonal decomposition into three distinct types of metric Lie algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.