Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally compact homogeneous spaces with inner metric (1412.7893v1)

Published 26 Dec 2014 in math.DG

Abstract: The author reviews his results on locally compact homogeneous spaces with inner metric, in particular, homogeneous manifolds with inner metric. The latter are isometric to homogeneous (sub-)Finslerian manifolds; under some additional conditions they are isometric to homogeneous (sub)-Riemannian manifolds. The class $\Omega$ of all locally compact homogeneous spaces with inner metric is supplied with some metric $d_{BGH}$ such that 1) $(\Omega,d_{BGH})$ is a complete metric space; 2) a sequences in $(\Omega,d_{BGH})$ is converging if and only if it is converging in Gromov-Hausdorff sense; 3) the subclasses $\mathfrak{M}$ of homogeneous manifolds with inner metric and $\mathfrak{LG}$ of connected Lie groups with left-invariant Finslerian metric are everywhere dense in $(\Omega,d_{BGH}).$ It is given a metric characterization of Carnot groups with left-invariant sub-Finslerian metric. At the end are described homogeneous manifolds such that any invariant inner metric on any of them is Finslerian.

Summary

We haven't generated a summary for this paper yet.