Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The geometry of multi-marginal Skorokhod Embedding (1705.09505v1)

Published 26 May 2017 in math.PR and q-fin.PR

Abstract: The Skorokhod Embedding Problem (SEP) is one of the classical problems in the study of stochastic processes, with applications in many different fields (cf.~ the surveys \cite{Ob04,Ho11}). Many of these applications have natural multi-marginal extensions leading to the \emph{(optimal) multi-marginal Skorokhod problem} (MSEP). Some of the first papers to consider this problem are \cite{Ho98b, BrHoRo01b, MaYo02}. However, this turns out to be difficult using existing techniques: only recently a complete solution was be obtained in \cite{CoObTo15} establishing an extension of the Root construction, while other instances are only partially answered or remain wide open. In this paper, we extend the theory developed in \cite{BeCoHu14} to the multi-marginal setup which is comparable to the extension of the optimal transport problem to the multi-marginal optimal transport problem. As for the one-marginal case, this viewpoint turns out to be very powerful. In particular, we are able to show that all classical optimal embeddings have natural multi-marginal counterparts. Notably these different constructions are linked through a joint geometric structure and the classical solutions are recovered as particular cases. Moreover, our results also have consequences for the study of the martingale transport problem as well as the peacock problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.