Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Tautological classes with twisted coefficients (1705.08875v2)

Published 24 May 2017 in math.AG

Abstract: Let $M_g$ be the moduli space of smooth genus $g$ curves. We define a notion of Chow groups of $M_g$ with coefficients in a representation of $Sp(2g)$, and we define a subgroup of tautological classes in these Chow groups with twisted coefficients. Studying the tautological groups of $M_g$ with twisted coefficients is equivalent to studying the tautological rings of all fibered powers $C_gn$ of the universal curve $C_g \to M_g$ simultaneously. By taking the direct sum over all irreducible representations of the symplectic group in fixed genus, one obtains the structure of a twisted commutative algebra on the tautological classes. We obtain some structural results for this twisted commutative algebra, and we are able to calculate it explicitly when $g \leq 4$. Thus we completely determine the tautological rings of all fibered powers of the universal curve over $M_g$ in these genera. We also give some applications to the Faber conjecture.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube