2000 character limit reached
The linearization of periodic Hamiltonian systems with one degree of freedom under the Diophantine condition (1705.08766v1)
Published 24 May 2017 in math.CA
Abstract: In this paper we are concerned with the periodic Hamiltonian system with one degree of freedom, where the origin is a trivial solution. We assume that the corresponding linearized system at the origin is elliptic, and the characteristic exponents of the linearized system are $\pm i\omega$ with $\omega$ be a Diophantine number, moreover if the system is formally linearizable, then it is analytically linearizable. As a result, the origin is always stable in the sense of Liapunov in this case.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.