Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

VANETs Meet Autonomous Vehicles: A Multimodal 3D Environment Learning Approach (1705.08624v1)

Published 24 May 2017 in cs.CV

Abstract: In this paper, we design a multimodal framework for object detection, recognition and mapping based on the fusion of stereo camera frames, point cloud Velodyne Lidar scans, and Vehicle-to-Vehicle (V2V) Basic Safety Messages (BSMs) exchanged using Dedicated Short Range Communication (DSRC). We merge the key features of rich texture descriptions of objects from 2D images, depth and distance between objects provided by 3D point cloud and awareness of hidden vehicles from BSMs' 3D information. We present a joint pixel to point cloud and pixel to V2V correspondences of objects in frames from the Kitti Vision Benchmark Suite by using a semi-supervised manifold alignment approach to achieve camera-Lidar and camera-V2V mapping of their recognized objects that have the same underlying manifold.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.