Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Optimized contraction scheme for tensor-network states (1705.08577v2)

Published 24 May 2017 in cond-mat.str-el, cond-mat.stat-mech, physics.comp-ph, and quant-ph

Abstract: In the tensor-network framework, the expectation values of two-dimensional quantum states are evaluated by contracting a double-layer tensor network constructed from initial and final tensor-network states. The computational cost of carrying out this contraction is generally very high, which limits the largest bond dimension of tensor-network states that can be accurately studied to a relatively small value. We propose an optimized contraction scheme to solve this problem by mapping the double-layer tensor network onto an intersected single-layer tensor network. This reduces greatly the bond dimensions of local tensors to be contracted and improves dramatically the efficiency and accuracy of the evaluation of expectation values of tensor-network states. It almost doubles the largest bond dimension of tensor-network states whose physical properties can be efficiently and reliably calculated, and it extends significantly the application scope of tensor-network methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.