Papers
Topics
Authors
Recent
2000 character limit reached

Left-symmetric bialgebroids and their corresponding Manin triples (1705.08299v1)

Published 21 May 2017 in math-ph, math.DG, and math.MP

Abstract: In this paper, we introduce the notion of a left-symmetric bialgebroid as a geometric generalization of a left-symmetric bialgebra and construct a left-symmetric bialgebroid from a pseudo-Hessian manifold. We also introduce the notion of a Manin triple for left-symmetric algebroids, which is equivalent to a left-symmetric bialgebroid. The corresponding double structure is a pre-symplectic algebroid rather than a left-symmetric algebroid. In particular, we establish a relation between Maurer-Cartan type equations and Dirac structures of the pre-symplectic algebroid which is the corresponding double structure for a left-symmetric bialgebroid.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.