Papers
Topics
Authors
Recent
Search
2000 character limit reached

Ambiguity set and learning via Bregman and Wasserstein

Published 23 May 2017 in stat.ML and cs.LG | (1705.08056v1)

Abstract: Construction of ambiguity set in robust optimization relies on the choice of divergences between probability distributions. In distribution learning, choosing appropriate probability distributions based on observed data is critical for approximating the true distribution. To improve the performance of machine learning models, there has recently been interest in designing objective functions based on Lp-Wasserstein distance rather than the classical Kullback-Leibler (KL) divergence. In this paper, we derive concentration and asymptotic results using Bregman divergence. We propose a novel asymmetric statistical divergence called Wasserstein-Bregman divergence as a generalization of L2-Wasserstein distance. We discuss how these results can be applied to the construction of ambiguity set in robust optimization.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.