Papers
Topics
Authors
Recent
2000 character limit reached

Highest weight theory for finite-dimensional graded algebras with triangular decomposition

Published 22 May 2017 in math.RT | (1705.08024v3)

Abstract: We show that the category of graded modules over a finite-dimensional graded algebra admitting a triangular decomposition can be endowed with the structure of a highest weight category. When the algebra is self-injective, we show furthermore that this highest weight category has tilting modules in the sense of Ringel. This provides a new perspective on the representation theory of such algebras, and leads to several new structures attached to them. There are a wide variety of examples in algebraic Lie theory to which this applies: restricted enveloping algebras, Lusztig's small quantum groups, hyperalgebras, finite quantum groups, and restricted rational Cherednik algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.