Papers
Topics
Authors
Recent
2000 character limit reached

Calibrating Black Box Classification Models through the Thresholding Method (1705.07348v2)

Published 20 May 2017 in stat.ML

Abstract: In high-dimensional classification settings, we wish to seek a balance between high power and ensuring control over a desired loss function. In many settings, the points most likely to be misclassified are those who lie near the decision boundary of the given classification method. Often, these uninformative points should not be classified as they are noisy and do not exhibit strong signals. In this paper, we introduce the Thresholding Method to parameterize the problem of determining which points exhibit strong signals and should be classified. We demonstrate the empirical performance of this novel calibration method in providing loss function control at a desired level, as well as explore how the method assuages the effect of overfitting. We explore the benefits of error control through the Thresholding Method in difficult, high-dimensional, simulated settings. Finally, we show the flexibility of the Thresholding Method through applying the method in a variety of real data settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.