Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accelerated Distributed Nesterov Gradient Descent (1705.07176v4)

Published 19 May 2017 in math.OC

Abstract: This paper considers the distributed optimization problem over a network, where the objective is to optimize a global function formed by a sum of local functions, using only local computation and communication. We develop an Accelerated Distributed Nesterov Gradient Descent (Acc-DNGD) method. When the objective function is convex and $L$-smooth, we show that it achieves a $O(\frac{1}{t{1.4-\epsilon}})$ convergence rate for all $\epsilon\in(0,1.4)$. We also show the convergence rate can be improved to $O(\frac{1}{t2})$ if the objective function is a composition of a linear map and a strongly-convex and smooth function. When the objective function is $\mu$-strongly convex and $L$-smooth, we show that it achieves a linear convergence rate of $O([ 1 - C (\frac{\mu}{L}){5/7} ]t)$, where $\frac{L}{\mu}$ is the condition number of the objective, and $C>0$ is some constant that does not depend on $\frac{L}{\mu}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.