Sharp bounds and T1 theorem for Calderón-Zygmund operators with matrix kernel on matrix weighted spaces
Abstract: For a matrix A_2 weight W on Rp, we introduce a new notion of W-Calder\'on-Zygmund matrix kernels, following earlier work in by Isralowitz. We state and prove a T1 theorem for such operators and give a representation theorem in terms of dyadic W-Haar shifts and paraproducts, in the spirit of Hyt\"onen's Representation Theorem. Finally, by means of a Bellman function argument, we give sharp bounds for such operators in terms of bounds for weighted matrix martingale transforms and paraproducts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.