Noether's Theorem in Multisymplectic Geometry (1705.05818v2)
Abstract: We extend Noether's theorem to the setting of multisymplectic geometry by exhibiting a correspondence between conserved quantities and continuous symmetries on a multi-Hamiltonian system. We show that a homotopy co-momentum map interacts with this correspondence in a way analogous to the moment map in symplectic geometry. We apply our results to generalize the theory of the classical momentum and position functions from the phase space of a given physical system to the multisymplectic phase space. We also apply our results to manifolds with a torsion-free $G_2$ structure.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.