A $q$-deformation of the symplectic Schur functions and the Berele insertion algorithm
Abstract: A randomisation of the Berele insertion algorithm is proposed, where the insertion of a letter to a symplectic Young tableau leads to a distribution over the set of symplectic Young tableaux. Berele's algorithm provides a bijection between words from an alphabet and a symplectic Young tableau along with a recording oscillating tableau. The randomised version of the algorithm is achieved by introducing a parameter $0 < q < 1$. The classic Berele algorithm corresponds to letting the parameter $q \to 0$. The new version provides a probabilistic framework that allows to prove Littlewood-type identities for a $q$-deformation of the symplectic Schur functions. These functions correspond to multilevel extensions of the continuous $q$-Hermite polynomials. Finally, we show that when both the original and the $q$-modified insertion algorithms are applied to a random word then the shape of the symplectic Young tableau evolves as a Markov chain on the set of partitions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.