Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions

Published 12 May 2017 in stat.CO and math.OC | (1705.04768v1)

Abstract: We study connections between Dykstra's algorithm for projecting onto an intersection of convex sets, the augmented Lagrangian method of multipliers or ADMM, and block coordinate descent. We prove that coordinate descent for a regularized regression problem, in which the (separable) penalty functions are seminorms, is exactly equivalent to Dykstra's algorithm applied to the dual problem. ADMM on the dual problem is also seen to be equivalent, in the special case of two sets, with one being a linear subspace. These connections, aside from being interesting in their own right, suggest new ways of analyzing and extending coordinate descent. For example, from existing convergence theory on Dykstra's algorithm over polyhedra, we discern that coordinate descent for the lasso problem converges at an (asymptotically) linear rate. We also develop two parallel versions of coordinate descent, based on the Dykstra and ADMM connections.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 31 likes about this paper.