Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Finite-Tame-Wild Trichotomy Theorem for Tensor Diagrams (1705.03448v2)

Published 9 May 2017 in math.RT

Abstract: In this paper, we consider the problem of determining when two tensor networks are equivalent under a heterogeneous change of basis. In particular, to a string diagram in a certain monoidal category (which we call tensor diagrams), we formulate an associated abelian category of representations. Each representation corresponds to a tensor network on that diagram. We then classify which tensor diagrams give rise to categories that are finite, tame, or wild in the traditional sense of representation theory. For those tensor diagrams of finite and tame type, we classify the indecomposable representations. Our main result is that a tensor diagram is wild if and only if it contains a vertex of degree at least three. Otherwise, it is of tame or finite type.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.