A Conley-type decomposition of the strong chain recurrent set (1705.00431v2)
Abstract: For a continuous flow on a compact metric space, the aim of this paper is to prove a Conley-type decomposition of the strong chain recurrent set. We first discuss in details the main properties of strong chain recurrent sets. We then introduce the notion of strongly stable set as an invariant set which is the intersection of the $\omega$-limits of a specific family of nested and definitively invariant neighborhoods of itself. This notion strengthens the one of stable set; moreover, any attractor results strongly stable. We then show that strongly stable sets play the role of attractors in the decomposition of the strong chain recurrent set; indeed, we prove that the strong chain recurrent set coincides with the intersection of all strongly stable sets and their complementaries.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.