Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimizing Schedules for Quantum Annealing (1705.00420v1)

Published 1 May 2017 in quant-ph

Abstract: Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.