Automated Recurrence Analysis for Almost-Linear Expected-Runtime Bounds
Abstract: We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. Several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., QUICK-SORT), or completely ineffective (e.g., COUPON-COLLECTOR). Since the main focus of expected-runtime analysis is to obtain efficient bounds, we consider bounds that are either logarithmic, linear, or almost-linear ($\mathcal{O}(\log n)$, $\mathcal{O}(n)$, $\mathcal{O}(n\cdot\log n)$, respectively, where n represents the input size). Our main contribution is an efficient (simple linear-time algorithm) sound approach for deriving such expected-runtime bounds for the analysis of recurrence relations induced by randomized algorithms. Our approach can infer the asymptotically optimal expected-runtime bounds for recurrences of classical randomized algorithms, including RANDOMIZED-SEARCH, QUICK-SORT, QUICK-SELECT, COUPONCOLLECTOR, where the worst-case bounds are either inefficient (such as linear as compared to logarithmic of expected-runtime, or quadratic as compared to linear or almost-linear of expected-runtime), or ineffective. We have implemented our approach, and the experimental results show that we obtain the bounds efficiently for the recurrences of various classical algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.