Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Models and algorithms for the next generation of glass transition studies (1704.08864v1)

Published 28 Apr 2017 in cond-mat.stat-mech

Abstract: Successful computer studies of glass-forming materials need to overcome both the natural tendency to structural ordering and the dramatic increase of relaxation times at low temperatures. We present a comprehensive analysis of eleven glass-forming models to demonstrate that both challenges can be efficiently tackled using carefully designed models of size polydisperse supercooled liquids together with an efficient Monte Carlo algorithm where translational particle displacements are complemented by swaps of particle pairs. We study a broad range of size polydispersities, using both discrete and continuous mixtures, and we systematically investigate the role of particle softness, attractivity and non-additivity of the interactions. Each system is characterized by its robustness against structural ordering and by the efficiency of the swap Monte Carlo algorithm. We show that the combined optimisation of the potential's softness, polydispersity and non-additivity leads to novel computer models with excellent glass-forming ability. For such models, we achieve over ten orders of magnitude gain in the equilibration timescale using the swap Monte Carlo algorithm, thus paving the way to computational studies of static and thermodynamic properties under experimental conditions. In addition, we provide microscopic insights into the performance of the swap algorithm which should help optimizing models and algorithms even further.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.