2000 character limit reached
A new method of joint nonparametric estimation of probability density and its support
Published 26 Apr 2017 in math.ST and stat.TH | (1704.08015v3)
Abstract: In this paper we propose a new method of joint nonparametric estimation of probability density and its support. As is well known, nonparametric kernel density estimator has "boundary bias problem" when the support of the population density is not the whole real line. To avoid the unknown boundary effects, our estimator detects the boundary, and eliminates the boundary-bias of the estimator simultaneously. Moreover, we refer an extension to a simple multivariate case, and propose an improved estimator free from the unknown boundary bias.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.