Papers
Topics
Authors
Recent
2000 character limit reached

Thinking Fast and Slow: Optimization Decomposition Across Timescales (1704.07785v2)

Published 25 Apr 2017 in math.OC

Abstract: Many real-world control systems, such as the smart grid and human sensorimotor control systems, have decentralized components that react quickly using local information and centralized components that react slowly using a more global view. This paper seeks to provide a theoretical framework for how to design controllers that are decomposed across timescales in this way. The framework is analogous to how the network utility maximization framework uses optimization decomposition to distribute a global control problem across independent controllers, each of which solves a local problem; except our goal is to decompose a global problem temporally, extracting a timescale separation. Our results highlight that decomposition of a multi-timescale controller into a fast timescale, reactive controller and a slow timescale, predictive controller can be near-optimal in a strong sense. In particular, we exhibit such a design, named Multi-timescale Reflexive Predictive Control (MRPC), which maintains a per-timestep cost within a constant factor of the offline optimal in an adversarial setting.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.