Alternation acyclic tournaments (1704.07245v3)
Abstract: We define a tournament to be alternation acyclic if it does not contain a cycle in which descents and ascents alternate. Using a result by Athanasiadis on hyperplane arrangements, we show that these tournaments are counted by the median Genocchi numbers. By establishing a bijection with objects defined by Dumont, we show that alternation acyclic tournaments in which at least one ascent begins at each vertex, except for the largest one, are counted by the Genocchi numbers of the first kind. Unexpected consequences of our results include a pair of ordinary generating function formulas for the Genocchi numbers of both kinds and a new very simple model for the normalized median Genocchi numbers.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.