Papers
Topics
Authors
Recent
2000 character limit reached

An elementary representation of the higher-order Jacobi-type differential equation

Published 24 Apr 2017 in math.CA | (1704.07081v1)

Abstract: We investigate the differential equation for the Jacobi-type polynomials which are orthogonal on the interval $[-1,1]$ with respect to the classical Jacobi measure and an additional point mass at one endpoint. This scale of higher-order equations was introduced by J. and R. Koekoek in 1999 essentially by using special function methods. In this paper, a completely elementary representation of the Jacobi-type differential operator of any even order is given. This enables us to trace the orthogonality relation of the Jacobi-type polynomials back to their differential equation. Moreover, we establish a new factorization of the Jacobi-type operator which gives rise to a recurrence relation with respect to the order of the equation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.