Papers
Topics
Authors
Recent
2000 character limit reached

Dual equivalence graphs II: Transformations on locally Schur positive graphs (1704.07039v1)

Published 24 Apr 2017 in math.CO

Abstract: Dual equivalence graphs are a powerful tool in symmetric function theory that provide a general framework for proving that a given quasisymmetric function is symmetric and Schur positive. In this paper, we study a larger family of graphs that includes dual equivalence graphs and define maps that, in certain cases, transform graphs in this larger family into dual equivalence graphs. This allows us to broaden the applications of dual equivalence graphs and points the way toward a broader theory that could solve many important, long-standing Schur positivity problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.