Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stability of receding traveling waves for a fourth order degenerate parabolic free boundary problem (1704.06596v2)

Published 21 Apr 2017 in math.AP and physics.flu-dyn

Abstract: Consider the thin-film equation $h_t + \left(h h_{yyy}\right)y = 0$ with a zero contact angle at the free boundary, that is, at the triple junction where liquid, gas, and solid meet. Previous results on stability and well-posedness of this equation have focused on perturbations of equilibrium-stationary or self-similar profiles, the latter eventually wetting the whole surface. These solutions have their counterparts for the second-order porous-medium equation $h_t - (hm){yy} = 0$, where $m > 1$ is a free parameter. Both porous-medium and thin-film equation degenerate as $h \searrow 0$, but the porous-medium equation additionally fulfills a comparison principle while the thin-film equation does not. In this note, we consider traveling waves $h = \frac V 6 x3 + \nu x2$ for $x \ge 0$, where $x = y-V t$ and $V, \nu \ge 0$ are free parameters. These traveling waves are receding and therefore describe de-wetting, a phenomenon genuinely linked to the fourth-order nature of the thin-film equation and not encountered in the porous-medium case as it violates the comparison principle. The linear stability analysis leads to a linear fourth-order degenerate-parabolic operator for which we prove maximal-regularity estimates to arbitrary orders of the expansion in $x$ in a right-neighborhood of the contact line $x = 0$. This leads to a well-posedness and stability result for the corresponding nonlinear equation. As the linearized evolution has different scaling as $x \searrow 0$ and $x \to \infty$, the analysis is more intricate than in related previous works. We anticipate that our approach is a natural step towards investigating other situations in which the comparison principle is violated, such as droplet rupture.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.