The Hadamard Determinant Inequality - Extensions to Operators on a Hilbert Space (1704.05421v2)
Abstract: A generalization of classical determinant inequalities like Hadamard's inequality and Fischer's inequality is studied. For a version of the inequalities originally proved by Arveson for positive operators in von Neumann algebras with a tracial state, we give a different proof. We also improve and generalize to the setting of finite von Neumann algebras, some `Fischer-type' inequalities by Matic for determinants of perturbed positive-definite matrices. In the process, a conceptual framework is established for viewing these inequalities as manifestations of Jensen's inequality in conjunction with the theory of operator monotone and operator convex functions on $[0,\infty)$. We place emphasis on documenting necessary and sufficient conditions for equality to hold.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.