Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods (1704.04549v2)

Published 14 Apr 2017 in math.NA

Abstract: In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require $\mathcal{O}(p{2d})$ storage and $\mathcal{O}(p{3d})$ computational work, where $p$ is the degree of basis polynomials used, and $d$ is the spatial dimension. Our SVD-based tensor-product preconditioner requires $\mathcal{O}(p{d+1})$ storage, $\mathcal{O}(p{d+1})$ work in two spatial dimensions, and $\mathcal{O}(p{d+2})$ work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in $p$ per degree of freedom in 2D, and reduce the computational complexity from $\mathcal{O}(p9)$ to $\mathcal{O}(p5)$ in 3D. Numerical results are shown in 2D and 3D for the advection and Euler equations, using polynomials of degree up to $p=15$. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees $p$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.