Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric collective spectral density estimation with an application to clustering the brain signals

Published 12 Apr 2017 in stat.ME | (1704.03907v3)

Abstract: In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at "https://ncsde.shinyapps.io/NCSDE" is developed for visualization, training and learning the SDFs collectively using the proposed technique. Finally, we apply our method to cluster similar brain signals recorded by the electroencephalogram for identifying synchronized brain regions according to their spectral densities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.