Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Effective field theories for van der Waals interactions (1704.03476v2)

Published 11 Apr 2017 in hep-ph, nucl-th, and physics.atom-ph

Abstract: Van der Waals interactions between two neutral but polarizable systems at a separation $R$ much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. We reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic EFTs of QED. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an EFT suited to describe the low energy dynamics of an atom pair. It may be computed systematically as a series in $R$ times some typical atomic scale and in the fine structure constant $\alpha$. The van der Waals potential gets short range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in $d$ spacetime dimensions. One can distinguish among different regimes depending on the relative size between $1/R$ and the typical atomic bound state energy $m\alpha2$. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of EFTs. The short distance regime is characterized by $1/R \gg m\alpha2$ and the LO van der Waals potential is the London potential. We compute also NNNLO corrections. In the long distance regime we have $1/R\ll m\alpha2$. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the EFT the Casimir-Polder potential counts as a NNNLO effect. In the intermediate distance regime, $1/R\sim m\alpha2$, a significantly more complex potential is obtained which we compare with the two previous limiting cases. We conclude commenting on the hadronic van der Waals case.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.