Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Elliptic hypergeometric sum/integral transformations and supersymmetric lens index (1704.03159v2)

Published 11 Apr 2017 in math-ph, hep-th, math.CA, math.MP, and math.QA

Abstract: We prove a pair of transformation formulas for multivariate elliptic hypergeometric sum/integrals associated to the $A_n$ and $BC_n$ root systems, generalising the formulas previously obtained by Rains. The sum/integrals are expressed in terms of the lens elliptic gamma function, a generalisation of the elliptic gamma function that depends on an additional integer variable, as well as a complex variable and two elliptic nomes. As an application of our results, we prove an equality between $S1\times S3/\mathbb{Z}_r$ supersymmetric indices, for a pair of four-dimensional $\mathcal{N}=1$ supersymmetric gauge theories related by Seiberg duality, with gauge groups $SU(n+1)$ and $Sp(2n)$. This provides one of the most elaborate checks of the Seiberg duality known to date. As another application of the $A_n$ integral, we prove a star-star relation for a two-dimensional integrable lattice model of statistical mechanics, previously given by the second author.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.