A Method to Guarantee Local Convergence for Sequential Quadratic Programming with Poor Hessian Approximation (1704.03064v1)
Abstract: Sequential Quadratic Programming (SQP) is a powerful class of algorithms for solving nonlinear optimization problems. Local convergence of SQP algorithms is guaranteed when the Hessian approximation used in each Quadratic Programming subproblem is close to the true Hessian. However, a good Hessian approximation can be expensive to compute. Low cost Hessian approximations only guarantee local convergence under some assumptions, which are not always satisfied in practice. To address this problem, this paper proposes a simple method to guarantee local convergence for SQP with poor Hessian approximation. The effectiveness of the proposed algorithm is demonstrated in a numerical example.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.