Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 136 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Topology in colored tensor models via crystallization theory (1704.02800v3)

Published 10 Apr 2017 in math-ph, hep-th, math.CO, math.GT, and math.MP

Abstract: The aim of this paper is twofold. On the one hand, it provides a review of the links between random tensor models, seen as quantum gravity theories, and the PL-manifolds representation by means of edge-colored graphs (crystallization theory). On the other hand, the core of the paper is to establish results about the topological and geometrical properties of the Gurau-degree (or G-degree) of the represented manifolds, in relation with the motivations coming from physics. In fact, the G-degree appears naturally in higher dimensional tensor models as the quantity driving their 1/N expansion, exactly as it happens for the genus of surfaces in the two-dimensional matrix model setting. In particular, the G-degree of PL-manifolds is proved to be finite-to-one in any dimension, while in dimension 3 and 4 a series of classification theorems are obtained for PL-manifolds represented by graphs with a fixed G-degree. All these properties have specific relevance in the tensor models framework, showing a direct fruitful interaction between tensor models and discrete geometry, via crystallization theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.