Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Strict monotonicity of principal eigenvalues of elliptic operators in $\mathbb{R}^d$ and risk-sensitive control (1704.02571v2)

Published 9 Apr 2017 in math.AP, math.OC, and math.PR

Abstract: This paper studies the eigenvalue problem on $\mathbb{R}d$ for a class of second order, elliptic operators of the form $\mathscr{L} = a{ij}\partial_{x_i}\partial_{x_j} + b{i}\partial_{x_i} + f$, associated with non-degenerate diffusions. We show that strict monotonicity of the principal eigenvalue of the operator with respect to the potential function $f$ fully characterizes the ergodic properties of the associated ground state diffusion, and the unicity of the ground state, and we present a comprehensive study of the eigenvalue problem from this point of view. This allows us to extend or strengthen various results in the literature for a class of viscous Hamilton-Jacobi equations of ergodic type with smooth coefficients to equations with measurable drift and potential. In addition, we establish the strong duality for the equivalent infinite dimensional linear programming formulation of these ergodic control problems. We also apply these results to the study of the infinite horizon risk-sensitive control problem for diffusions, and establish existence of optimal Markov controls, verification of optimality results, and the continuity of the controlled principal eigenvalue with respect to stationary Markov controls.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.