Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conceptualization Topic Modeling (1704.02090v1)

Published 7 Apr 2017 in cs.CL and cs.IR

Abstract: Recently, topic modeling has been widely used to discover the abstract topics in text corpora. Most of the existing topic models are based on the assumption of three-layer hierarchical Bayesian structure, i.e. each document is modeled as a probability distribution over topics, and each topic is a probability distribution over words. However, the assumption is not optimal. Intuitively, it's more reasonable to assume that each topic is a probability distribution over concepts, and then each concept is a probability distribution over words, i.e. adding a latent concept layer between topic layer and word layer in traditional three-layer assumption. In this paper, we verify the proposed assumption by incorporating the new assumption in two representative topic models, and obtain two novel topic models. Extensive experiments were conducted among the proposed models and corresponding baselines, and the results show that the proposed models significantly outperform the baselines in terms of case study and perplexity, which means the new assumption is more reasonable than traditional one.

Citations (17)

Summary

We haven't generated a summary for this paper yet.