Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean Dichotomy (1704.01937v2)

Published 6 Apr 2017 in cs.CC, cs.DM, and cs.LO

Abstract: A classic result due to Schaefer (1978) classifies all constraint satisfaction problems (CSPs) over the Boolean domain as being either in $\mathsf{P}$ or $\mathsf{NP}$-hard. This paper considers a promise-problem variant of CSPs called PCSPs. A PCSP over a finite set of pairs of constraints $\Gamma$ consists of a pair $(\Psi_P, \Psi_Q)$ of CSPs with the same set of variables such that for every $(P, Q) \in \Gamma$, $P(x_{i_1}, ..., x_{i_k})$ is a clause of $\Psi_P$ if and only if $Q(x_{i_1}, ..., x_{i_k})$ is a clause of $\Psi_Q$. The promise problem $\operatorname{PCSP}(\Gamma)$ is to distinguish, given $(\Psi_P, \Psi_Q)$, between the cases $\Psi_P$ is satisfiable and $\Psi_Q$ is unsatisfiable. Many natural problems including approximate graph and hypergraph coloring can be placed in this framework. This paper is motivated by the pursuit of understanding the computational complexity of Boolean promise CSPs. As our main result, we show that $\operatorname{PCSP}(\Gamma)$ exhibits a dichotomy (it is either polynomial time solvable or $\mathsf{NP}$-hard) when the relations in $\Gamma$ are symmetric and allow for negations of variables. We achieve our dichotomy theorem by extending the weak polymorphism framework of Austrin, Guruswami, and H\aa stad [FOCS '14] which itself is a generalization of the algebraic approach to study CSPs. In both the algorithm and hardness portions of our proof, we incorporate new ideas and techniques not utilized in the CSP case. Furthermore, we show that the computational complexity of any promise CSP (over arbitrary finite domains) is captured entirely by its weak polymorphisms, a feature known as Galois correspondence, as well as give necessary and sufficient conditions for the structure of this set of weak polymorphisms. Such insights call us to question the existence of a general dichotomy for Boolean PCSPs.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.