Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Hierarchical Bayesian Model of Pitch Framing (1704.00823v2)

Published 3 Apr 2017 in stat.AP

Abstract: Since the advent of high-resolution pitch tracking data (PITCHf/x), many in the sabermetrics community have attempted to quantify a Major League Baseball catcher's ability to "frame" a pitch (i.e. increase the chance that a pitch is called as a strike). Especially in the last three years, there has been an explosion of interest in the "art of pitch framing" in the popular press as well as signs that teams are considering framing when making roster decisions. We introduce a Bayesian hierarchical model to estimate each umpire's probability of calling a strike, adjusting for pitch participants, pitch location, and contextual information like the count. Using our model, we can estimate each catcher's effect on an umpire's chance of calling a strike.We are then able to translate these estimated effects into average runs saved across a season. We also introduce a new metric, analogous to Jensen, Shirley, and Wyner's Spatially Aggregate Fielding Evaluation metric, which provides a more honest assessment of the impact of framing.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.