Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Graph Partitioning with Acyclicity Constraints (1704.00705v1)

Published 3 Apr 2017 in cs.DS, cs.CV, and cs.DC

Abstract: Graphs are widely used to model execution dependencies in applications. In particular, the NP-complete problem of partitioning a graph under constraints receives enormous attention by researchers because of its applicability in multiprocessor scheduling. We identified the additional constraint of acyclic dependencies between blocks when mapping computer vision and imaging applications to a heterogeneous embedded multiprocessor. Existing algorithms and heuristics do not address this requirement and deliver results that are not applicable for our use-case. In this work, we show that this more constrained version of the graph partitioning problem is NP-complete and present heuristics that achieve a close approximation of the optimal solution found by an exhaustive search for small problem instances and much better scalability for larger instances. In addition, we can show a positive impact on the schedule of a real imaging application that improves communication volume and execution time.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube