Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Left-invariant Einstein metrics on $S^3 \times S^3$ (1703.10512v3)

Published 30 Mar 2017 in math.DG, hep-th, math-ph, and math.MP

Abstract: The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics $g$ on $G = \mathrm{SU}(2) \times \mathrm{SU}(2) = S3 \times S3$. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature $S$ of a left-invariant metric $g$ is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of $S$, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group $K$ of $g$ in the group of motions is non-trivial. When $K\not\cong \mathbb{Z}_2$ we prove that the Einstein metrics on $G$ are given by (up to homothety) either the standard metric or the nearly K\"ahler metric, based on representation-theoretic arguments and computer algebra. For the remaining case $K\cong \mathbb{Z}_2$ we present partial results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube