Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rigidity for von Neumann algebras given by locally compact groups and their crossed products (1703.09092v2)

Published 27 Mar 2017 in math.OA, math.DS, and math.GR

Abstract: We prove the first rigidity and classification theorems for crossed product von Neumann algebras given by actions of non-discrete, locally compact groups. We prove that for arbitrary free probability measure preserving actions of connected simple Lie groups of real rank one, the crossed product has a unique Cartan subalgebra up to unitary conjugacy. We then deduce a W* strong rigidity theorem for irreducible actions of products of such groups. More generally, our results hold for products of locally compact groups that are nonamenable, weakly amenable and that belong to Ozawa's class S.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.