Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schur multipliers on $\mathcal{B}(L^p,L^q)$ (1703.08128v1)

Published 23 Mar 2017 in math.FA

Abstract: Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces and let $1 \leq p,q \leq +\infty$. We give a definition of Schur multipliers on $\mathcal{B}(Lp(\Omega_1), Lq(\Omega_2))$ which extends the definition of classical Schur multipliers on $\mathcal{B}(\ell_p,\ell_q)$. Our main result is a characterization of Schur multipliers in the case $1\leq q \leq p \leq +\infty$. When $1 < q \leq p < +\infty$, $\phi \in L{\infty}(\Omega_1 \times \Omega_2)$ is a Schur multiplier on $\mathcal{B}(Lp(\Omega_1), Lq(\Omega_2))$ if and only if there are a measure space (a probability space when $p\neq q$) $(\Omega,\mu)$, $a\in L{\infty}(\mu_1, L{p}(\mu))$ and $b\in L{\infty}(\mu_2, L{q'}(\mu))$ such that, for almost every $(s,t) \in \Omega_1 \times \Omega_2$, $$\phi(s,t)=\left\langle a(s), b(t) \right\rangle.$$ Here, $L{\infty}(\mu_1, L{r}(\mu))$ denotes the Bochner space on $\Omega_1$ valued in $Lr(\mu)$. This result is new, even in the classical case. As a consequence, we give new inclusion relationships between the spaces of Schur multipliers on $\mathcal{B}(\ell_p,\ell_q)$.

Summary

We haven't generated a summary for this paper yet.