Separating Fourier and Schur multipliers (2303.13983v1)
Abstract: Let $G$ be a locally compact unimodular group, let $1\leq p<\infty$,let $\phi\in L\infty(G)$ and assume that the Fourier multiplier $M_\phi$associated with $\phi$ is bounded on the noncommutative $Lp$-space $Lp(VN(G))$.Then $M_\phi\colon Lp(VN(G))\to Lp(VN(G))$ is separating (that is,${ab=ab^=0}\Rightarrow{M_\phi(a)* M_\phi(b)=M_\phi(a)M_\phi(b)*=0}$for any $a,b\in Lp(VN(G))$) if and only if thereexists $c\in\mathbb C$ and a continuouscharacter $\psi\colon G\to\mathbb C$ such that $\phi=c\psi$ locally almost everywhere. This provides a characterization of isometricFourier multipliers on $Lp(VN(G))$, when $p\not=2$. Next, let $\Omega$ be a $\sigma$-finite measure space, let $\phi\in L\infty(\Omega2)$and assume that the Schur multiplier associated with $\phi$ is bounded on the Schatten space $Sp(L2(\Omega))$. We prove that this multiplier is separating if and only if there exist a constant $c\in\mathbb C$ and two unitaries $\alpha,\beta\in L\infty(\Omega)$ such that $\phi(s,t) =c\, \alpha(s)\beta(t)$ a.e. on $\Omega2.$ This provides acharacterization of isometric Schur multiplierson $Sp(L2(\Omega))$, when $p\not=2$.