Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Separating Fourier and Schur multipliers (2303.13983v1)

Published 24 Mar 2023 in math.CA, math.FA, and math.OA

Abstract: Let $G$ be a locally compact unimodular group, let $1\leq p<\infty$,let $\phi\in L\infty(G)$ and assume that the Fourier multiplier $M_\phi$associated with $\phi$ is bounded on the noncommutative $Lp$-space $Lp(VN(G))$.Then $M_\phi\colon Lp(VN(G))\to Lp(VN(G))$ is separating (that is,${ab=ab^=0}\Rightarrow{M_\phi(a)* M_\phi(b)=M_\phi(a)M_\phi(b)*=0}$for any $a,b\in Lp(VN(G))$) if and only if thereexists $c\in\mathbb C$ and a continuouscharacter $\psi\colon G\to\mathbb C$ such that $\phi=c\psi$ locally almost everywhere. This provides a characterization of isometricFourier multipliers on $Lp(VN(G))$, when $p\not=2$. Next, let $\Omega$ be a $\sigma$-finite measure space, let $\phi\in L\infty(\Omega2)$and assume that the Schur multiplier associated with $\phi$ is bounded on the Schatten space $Sp(L2(\Omega))$. We prove that this multiplier is separating if and only if there exist a constant $c\in\mathbb C$ and two unitaries $\alpha,\beta\in L\infty(\Omega)$ such that $\phi(s,t) =c\, \alpha(s)\beta(t)$ a.e. on $\Omega2.$ This provides acharacterization of isometric Schur multiplierson $Sp(L2(\Omega))$, when $p\not=2$.

Summary

We haven't generated a summary for this paper yet.