Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p$-$L^q$ multipliers on locally compact groups (1510.06321v3)

Published 19 Oct 2015 in math.RT, math.CA, and math.FA

Abstract: In this paper we discuss the $Lp$-$Lq$ boundedness of both spectral and Fourier multipliers on general locally compact separable unimodular groups $G$ for the range $1<p\leq q<\infty$. We prove a Lizorkin type multiplier theorem for $1<p\leq q<\infty$, and then refine it as a H\"ormander type multiplier theorem for $1<p\leq 2\leq q<\infty$. In the process, we establish versions of Paley and Hausdorff-Young-Paley inequalities on general locally compact separable unimodular groups. As a consequence of the H\"ormander type multiplier theorem we derive a spectral multiplier theorem on general locally compact separable unimodular groups. We then apply it to obtain embedding theorems as well as time-asymptotics for the $Lp$-$Lq$ norms of the heat kernels for general positive unbounded invariant operators on $G$. We illustrate the obtained results for sub-Laplacians on compact Lie groups and on the Heisenberg group. We show that our results imply the known results for $Lp$-$Lq$ multipliers such as H\"ormander's Fourier multiplier theorem on $\mathbb{R}{n}$ or known results for Fourier multipliers on compact Lie groups. The new approach developed in this paper relies on the analysis in the group von Neumann algebra for the derivation of the desired multiplier theorems.

Summary

We haven't generated a summary for this paper yet.