Papers
Topics
Authors
Recent
2000 character limit reached

Measure equivalence and coarse equivalence for unimodular locally compact groups (1703.08121v5)

Published 23 Mar 2017 in math.GR

Abstract: This article is concerned with measure equivalence and uniform measure equivalence of locally compact, second countable groups. We show that two unimodular, locally compact, second countable groups are measure equivalent if and only if they admit free, ergodic, probability measure preserving actions whose cross section equivalence relations are stably orbit equivalent. Using this we prove that in the presence of amenability any two such groups are measure equivalent and that both amenability and property (T) are preserved under measure equivalence, extending results of Connes-Feldman-Weiss and Furman. Furthermore, we introduce a notion of uniform measure equivalence for unimodular, locally compact, second countable groups, and prove that under the additional assumption of amenability this notion coincides with coarse equivalence, generalizing results of Shalom and Sauer. Throughout the article we rigorously treat measure theoretic issues arising in the setting of non-discrete groups.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.