Papers
Topics
Authors
Recent
2000 character limit reached

Decomposition theory of modules: the case of Kronecker algebra (1703.07906v1)

Published 23 Mar 2017 in math.RT and math.RA

Abstract: Let $A$ be a finite-dimensional algebra over an algebraically closed field $\Bbbk$. For any finite-dimensional $A$-module $M$ we give a general formula that computes the indecomposable decomposition of $M$ without decomposing it, for which we use the knowledge of AR-quivers that are already computed in many cases. The proof of the formula here is much simpler than that in a prior literature by Dowbor and Mr\'oz. As an example we apply this formula to the Kronecker algebra $A$ and give an explicit formula to compute the indecomposable decomposition of $M$, which enables us to make a computer program.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.