Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How to avoid the curse of dimensionality: scalability of particle filters with and without importance weights (1703.07879v2)

Published 22 Mar 2017 in math.OC, math.PR, math.ST, stat.ME, and stat.TH

Abstract: Particle filters are a popular and flexible class of numerical algorithms to solve a large class of nonlinear filtering problems. However, standard particle filters with importance weights have been shown to require a sample size that increases exponentially with the dimension D of the state space in order to achieve a certain performance, which precludes their use in very high-dimensional filtering problems. Here, we focus on the dynamic aspect of this curse of dimensionality (COD) in continuous time filtering, which is caused by the degeneracy of importance weights over time. We show that the degeneracy occurs on a time-scale that decreases with increasing D. In order to soften the effects of weight degeneracy, most particle filters use particle resampling and improved proposal functions for the particle motion. We explain why neither of the two can prevent the COD in general. In order to address this fundamental problem, we investigate an existing filtering algorithm based on optimal feedback control that sidesteps the use of importance weights. We use numerical experiments to show that this Feedback Particle Filter (FPF) by Yang et al. (2013) does not exhibit a COD.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.