Multiple positive solutions for degenerate Kirchhoff equations with singular and Choquard nonlinearity (2106.10856v1)
Abstract: In this paper we study the existence, multiplicity and regularity of positive weak solutions for the following Kirchhoff-Choquard problem: \begin{equation*} \begin{array}{cc} \displaystyle M\left( \iint\limits_{\mathbb{R}{2N}} \frac{|u(x)-u(y)|2}{|x-y|{N+2s}}\,dxdy\right) (-\Delta)s u = \frac{\lambda}{u\gamma} + \left( \int\limits_{\Omega} \frac{|u(y)|{2{*}_{\mu ,s}}}{|x-y|^ \mu}\, dy\right) |u|{2{*}_{\mu ,s}-2}u \;\text{in} \; \Omega, %\quad \quad u > 0\quad \text{in} \; \Omega, \quad \quad u = 0\quad \text{in} \; \mathbb{R}{N}\backslash\Omega, \end{array} \end{equation*} where $\Omega$ is open bounded domain of $\mathbb{R}{N}$ with $C2$ boundary, $N > 2s$ and $s \in (0,1)$. $M$ models Kirchhoff-type coefficient in particular, the degenerate case where Kirchhoff coefficient M is zero at zero. $(-\Delta)s$ is fractional Laplace operator, $\lambda > 0$ is a real parameter, $\gamma \in (0,1)$ and $2{*}_{\mu ,s} = \frac{2N-\mu}{N-2s}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We prove that each positive weak solution is bounded and satisfy H\"older regularity of order $s$. Furthermore, using the variational methods and truncation arguments we prove the existence of two positive solutions.